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Constant strain- and stress-rate compressive 
strength of columnar-grained ice 
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Geotechnical Section, Division of Building Research, National Research Council of 
Canada, Ottawa, Canada 

Unconfined compressive strength of transversely isotropic columnar-grained ice has been 
investigated for loads applied normal to the longitudinal axis of the columns at the high 
homologous temperature of 0.96 Tm (Trn is the melting temperature) under truly constant 
strain and stress rates. A closed-loop, serve-hydraulic test system inside a cold room was 
used. Both the strain- and stress-rate dependences of upper yield stress can be expressed 
in terms of power laws. The observed strain-rate dependence of strength was found to be 
numerically the same as the dependence of viscous-flow rate on stress in constant stress 
creep tests at the same temperature. It is shown that the strain-rate sensitivity of yield 
strength compares well with previous results (obtained under constant cross-head rates 
using a conventional machine) only if the average strain rate to yield is used as the 
independent variable instead of the conventional nominal strain rate. The paper also 
discusses the strain and time aspects of the tests. It shows interdependence among values 
for compressive yield strength, strain rate, failure strain and time very similar to the inter- 
dependence among the corresponding values in tensile creep failures in metals, alloys and 
other polycrystalline materials at high temperatures. It is emphasized that the splitting 
type of brittle-like premature failure depends on the stiffness of the test system and 
should not be considered to be a fundamental material property. The concept of failure 
modulus is proposed for examining the ductile to brittle transition. 

1. I n t r o d u c t i o n  
Rate sensitivity of  ice strength is well recognized 
and several studies have been made of the strain- 
rate dependence of its compressive strength under 
uniaxial loading conditions. Tests were conducted 
under constant or near-constant actuator or cross- 
head displacement rates. Strain rates were some- 
times assumed to be constant and equal to 
"nominal strain rate", en = 2/l ,  that is, to the ratio 
of displacement rate, 2, and specimen length, l. A 
relation was sought between the upper yield or 
maximum stress, of, and en- The upper yield stress 
will often be referred to in this paper as yield 
stress, failure stress or strength. 

A programme of developing strength testing 
procedures and methods of analysing the results 
was undertaken by the author [1], with par- 
ticular attention given to the non-constancy of the 
strain rate that usually exists for constant cross- 
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head displacement rate tests. Because of this non- 
constancy, such tests cannot be construed as 
taking place at constant strain rate. 

Observation of specimens prior to failure 
revealed that deformation history influences 
internal cracking activity and therefore should 
affect strength. A reasonable representation of 
the deformation history was considered to be 
given by the average strain rate to yield or failure, 
~ar = e f / t f ,  where e~ and tf were, respectively, 
failure strain and failure time. Using eae instead 
of the nominal strain rate provided a coherent 
interrelation of of, el, t~ and ear for yielding and 
pointed out, in particular, the need to establish 
the dependence of strength on a truly constant 
strain rate [1]. 

As strength measuring systems are invariably 
equipped to record load, it was decided to examine 
the stress history of the author's earlier measure- 
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merits made with a conventional system. The 
observation that during a constant cross-head rate 
test the load was applied at a nearly constant rate, 
not only for the initial loading period (as observed 
by Traetteberg e t  al. [2] in examining the depen- 
dence o f  initial modulus on strain rate) but also 
for up to about 90 per cent of  yield stress, indi- 
cated that a constant stress-rate analysis was more 
appropriate than the assumption of constant strain 
rate. 

The analysis allowed the effect of test system 
stiffness on strength to be taken into consideration. 
It was shown that a stiff system would give a higher 
yield strength than a soft system at the same ela 
and shift the occurrence of abrupt "brittle-like" 
premature failures to lower strain rates [1]. These 
conclusions were verified experimentally [3]. 
Much of the reported scatter in ice strength was 
confirmed, therefore, to be due not only to differ- 
ences in the type of ice but also to differences in 
the geometry of the specimens and the relative 
stiffness of  the test systems. The stress rate 
analysis, however, posed the problem of what the 
response of ice would be for a truly constant stress 
rate. 

The analyses emphasized the fact that for rate- 
sensitive materials, or, strictly speaking, for con- 
ditions where the rate sensitivity of a material 
becomes pronounced, not only the strength for 
compression-cracking types of  failure, as argued 
by Kandall [4] and Karihaloo [5], but also the 
compressive yield strength may not be useful 
information without knowledge of the response 
of the test system. The need to control the stress 
or strain history during a strength measurement 
was clearly established. 

This report presents results obtained from a 
closed-loop test system. To maintain continuity, 
other conditions of testing were kept the same as 
in the author's earlier studies, i.e., the type of ice, 
its structure, texture, density and average grain 
diameter, specimen geometry, test temperature, 
load and strain measurement. Specimens were 
prepared at the Division of Building Research, 
National Research Council in Ottawa, and tests 
were conducted at Exxon Production Research 
Laboratory in Houston, Texas, U.S.A. 

2. Experimental details 
2.1. Preparation of ice and specimens 
Rectangular specimens were made from columnar- 
grained S-2 ice of average cross-sectional grain 

size, d = 4 to 5mm and density of 917.7kgm -3 
at - 9 ~  [6]. (This does not differ from single- 
crystal density of 917.8 kgm -3 by more than the 
error of measurement.) The ice was prepared from 
distilled and de-aerated water and selected accord- 
ing to previously described methods [7]. Speci- 
mens were machined to their final dimensions of 
5 cm x 10 cmx 25 cm, with the axis of the columns 
normal to the 10cmx 25cm faces. They were 
made inside a cold room at - 10 ~ C two weeks 
before they were transported to Houston by care- 
fully, milling and surface finishing according to the 
method already described [1]. Specimens were 
stored in a kerosene bath to prevent sublimation. 

2.2. Transporation of specimens 
Sixteen specimens were transported in a heavily 
insulated box, each specimen coated with kerosene 
and stored inside a sealed plastic bag. The bags 
were individually wrapped with insulating and 
shock-absorbing material, then tightly arranged in 
the central part of the container and additional 
layers of insulation added at the periphery of the 
block of samples. Thin slices of  dry ice were 
placed between the inner insulation and the 
insulated walls and the lid of the box. These 
precautions were taken to avoid any thermal or 
mechanical shock to the specimens. Their tempera- 
ture was monitored and allowed to drop to about 
- - 30~  from - -10~  in two days. Additional 
small amounts of dry ice were added to the box 
prior to the flight to Houston which took about 
8h. The box was taken to a cold room a t - - 1 0 ~  
immediately after arrival. It was therefore outside 
a cold room for a total of  10h exactly, in which 
time the temperature inside did not change by any 
significant amount. At Houston the specimens 
were allowed to warm up to the test temperature 
o f - -  10 ~ C over a two-day period. 

2.3.  Tes t  sy s t ems  
The test machine was an MTS Model 810.15 of 
1.0 MN capacity [8] situated inside a cold room, 
with the controls, pump, and recording system 
outside it. The loading column consisted of two 
32 cm diameter MTS compression platens (one at 
the top and one at the bottom of the specimen), 
a spherical seat, and a 0.91 MN capacity load cell. 
The lower platen was attached to the actuator and 
the upper platen reacted against the load flame 
through the spherical seat and the load cell. 

The specimen temperature was controlled by 
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that of  the cold r o o m ,  set during this series of  
experiments at -- 10 ~ C. A thermistor was placed 
between a pair of  specimens to record the actual 
temperature. The temperature variation was never 
more than -+ 0.2 ~ C from -- 10 ~ C during the four 
days o f  testing. 

The machine could be programmed to apply 
various amounts and rates o f  load, strain, and 
displacement. Strain rate was recorded and con- 
trolled by a 2.5 cm gauge-length MTS extenso- 
meter attached directly to the central area of  the 
10 cm x 25 cm face of  the specimen. Load and the 
strain outputs were recorded separately as func- 
tions o f  time to permit comparison with earlier 
observations [1]. 

2 .4 .  T y p e  o f  t e s t ing  
Compressive loads were applied to the 5 cm x 
10cm faces of  the specimens and thus normal to 
the length of  the columnar grains. Ten of  the 
specimens were tested under constant strain rates, 
~, in the range of  5 x 10 -7 to 5 x 10 -s sec -a; five 
were tested under constant stress rates, 6 ,  in the 
range of  l x 1 0  -3 to 8 x 1 0  - 2 M N m  -2sec - 1 ; o n e  
was damaged during the initial trial run. 

2 .5 .  Tes t  p r o c e d u r e s  
Procedures, including those for recording cracking 
activity, recovery strain after yield, and micro- 
structural examinations including determination of  
grain size, followed as closely as possible the 

methods used earlier [1]. The specimens were 
brought back to Ottawa for microstructural 
analysis using the precautions described for taking 
them to Houston. 

3. Results and analysis 
3.1.  Tests at cons tan t  strain rates 
3. 1.1. General observations 
All the specimens tested in the range of 5 x 10 -7 to 
3 x 10 -s sec -1 exhibited a distinct upper yield, 
with load decreasing after it reached a maximum 
value. The measured strain rates were constant and 
did not vary by more than an error of  measure- 
ment of  about 1.0% from the applied rates. Fig. 1 
gives the stress-strain diagrams for all tests. The 
end of  each curve shows the stress, strain and, 
hence, time when the specimen was unloaded. 
The strain associated with the initiation of  internal 
cracking is also shown. 

The number of  internal cracks at the time of 
unloading increased with increase in strain rate, as 
shown in Fig. 2. The cracks were long and narrow, 
and parallel to the length of  the columnar grains, 
similar to those observed by  Gold [9] during 
uniaxial constant load creep experiments. The 
specimen tested at 5 x 10 -7 sec -1 did not,however, 
develop any visible cracks and stayed clear and 
transparent during the entire loading period. On 
removal of  load after yield a few minute cracks 
developed suddenly in the specimen during the 
unloading time (<  0.5 sec). 
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Figure 2 Specimens after unloading and complete recovery. Note the increase in crack density and strain rate. 

It should be mentioned that the actual strain 
rate experienced by the sample deformed at 
5 x 10 -7 sec -1 could have been slightly lower 
owing to drift. The estimated maximum change 
was -- 1.8 x 10 -7 sec -1 . The signal-to-noise ratio 

was high because of the low strain level and it was 
not certain whether this change occurred at a 
constant rate during the loading period. 

Two tests were carried out at a strain rate of 
5 x 10 -s sec-*. Both specimens failed by splitting. 
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Figure 3 Dependence of yield or fail- 
ure stress and strain on constant 
strain rate for columnar-grained S-2 
ice of average grain size of 4 to 5 mm 
at -- 10 ~ C. 

The first failed at a stress of 4 . 5 M N m  -2 after 

a loading time of 19sec. Examination of the 
sample end surfaces disclosed signs of damage, 
probably caused by sublimation during storage. 
The test was therefore repeated with another 
specimen whose end surfaces were smoothed by 
hand using emergy paper. This specimen also 
failed by splitting, but  it took longer (21.25 sec) 
and had a higher strength (5.6MNm-2).  The 
average stress-rates to failure in the two tests 
were 0.24 and 0 .27MNm -2 sec -1, but the stress 

rate during loading was nearly constant at 
0 .31MNm -2sec -1 until  splitting started to 

occur. This splitting type of failure will be called 
"premature" failure in accordance with the 

terminology used earlier [1]. It was not possible 
to investigate the effect of end conditions or to 

carry out tests at higher strain rates owing to the 
lack of specimens. 

3. 1.2. Strength-strain-rate relation 
The dependence of strength, af, on strain rate, ~, is 
shown in Fig. 3, including the premature failures. 

The uncertainty in the strain rate for the slowest 
test is also indicated. As the total strains at failure 
in all the tests were very small (less than 1.2 x 10 -3, 

see Fig. 3), the stresses estimated from the loads 
and cross-sectional areas of the specimens can be 
considered to be true stresses. The maximum 
stress for the yield type of failure was found to 
vary with strain rate according to the following 
dimensionally-balanced relation 

O_L = p  e v, (1) 

ol  

where ol and el are the unit  or reference stress 
and strain rates, respectively. 

Least-squares regressional fit of the results gave 

P =  212 and p = 0.345 with a correlation coef- 
ficient of 0.989 (see Table I). The slowest test 

T A B L E I Results of regression analyses (using stress in MN m -~ and time in sec) 

Equation Equation Coefficient Exponent Correlation 
number coefficient 

1 af ~(~_)o - P P = 212+-59 p = 0.345-+0.023 0.989 
13"1 

tf (~1)- q 3 -- Q Q = 7.31x10 -3-+ 1.10x10 -3 q = 0.818-+0.012 0.999 
t~ 

o m  
12 - R R = 12.4 +_ 0.8 r = 0.230 +- 0.013 0.995 

U 1 \ U I I  
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result was excluded because of the uncertainty in 
6. With the above values of the coefficient and 
the exponent, Equation 1 can be written as 

= ( e l  ~ ~ 212 - -  (2) 
al \61 / 

where ol = 1 MNm -2 and 61 = 1 sec -1. Note the 
resemblance of the form of the above relation to 
the dependence of stress and steady-state or, 
strictly speaking, the minimum strain rate in creep 
tests under constant stress and temperature 
commonly observed in polycrystalline materials, 
including ice at high homologous temperatures 
[10,111. 

3. 1.3. Failure time 
The dependence of time to reach yield stress, tf, 
on strain rate is shown in Fig. 4, which also indi- 
cates the uncertainty in the slowest test. The 
dependence of tf on ~ can be represented by 

t__, ( ~ I  -~ 
t l  = Q (3) \el / 

where tl is the unit or reference time. 
Application of the least-squares fit, excluding 

the slowest test result, gave Q = 7.3 x 10 -3 and 
q = 0.82 with a correlation coefficient of 0.999 
(Table I). With these values of the constants 
Equation 3 gives 

t~  = 7.3X10_3 (d__t -~ 
t l  \el ] (4) 

where tl = 1 sec. 
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The yield stress for the slowest test agrees well 
with the best-fit curve (Fig. 3) if the estimated 
maximum correction to the strain rate is applied; 
on the other hand, the failure time agrees better 
with the best-fit curve (Fig. 4) if no correction to 
the strain rate is made. This indicates that the 
actual specimen strain rate was perhaps somewhere 
between the two values. 

Equation 4 is similar to that which has been 
generally observed for the dependence of creep 
rupture time at constant temperature on the 
corresponding secondary or steady-state strain 
rate. Creep rupture time in metals and other 
polycrystalline materials has been noted as 
approximately inversely proportional to the 
steady-state creep rate. 

3. 1.4. Dependence o f  failure time on 
yield stress 

Interdependence of failure time and failure stress 
can be obtained from Equations 1 and 3 giving 

tf Qpqlp (O__Ll-q/P" 
t--1 = \~1 / (S) 

Substitution of the numerical values of P, Q, p and 
q from Table I in Equation 5 gives 

teL- = 2.40 x 103 - -  (6) 
t ,  l o , /  " 

There is a remarkable similarity between Equation 6 
and the dependence of creep rupture time on 
stress for metals and alloys at high temperatures 
[10, 12,131. 
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3. 1.5. Failure strain-strain-rate relation 
For conditions of constant rate of strain, the failure 
strain, el, is given by the product of ~ and tf: 

tf (7) 
e f -  el t l "  

Substitution in Equation 7 of tf/tl from Equation 3 
gives the dependence of failure strain on the 
imposed strain rate, 

I e~_" li-q 
ef = Q \el I (8) 

or, using the values in Table I, 
( ~ I  ~ 

ef = 7.3 x l 0  -3 - -  (9) \e l /  " 
Figs 3 and 4 show that strain at yield does not 
vary with strain rate as much as with of and tf. 
For the increase in ~ of almost two orders of 
magnitude, ef increased by a factor of only about 
2.5 compared with an increase of 5 times in at 
(Fig. 3) or a decrease of 25 times in tf (Fig. 4). 
Analogous behaviour has been observed in metals 
and alloys during tensile creep rupture or fracture 
experiments, and creep ductility has been found 
to be relatively insensitive to a wide variation of 
stress and creep life. When nucleation and growth 
of cavities are responsible for creep failure, the 
strain at fracture has been reported to be almost 
independent of stress and hence of steady-state 

strain rate in metals and alloys [14, 15]. A relation 
of the form of Equation 7 with a constant for ef 
has been widely accepted [10, 16]. 

3. 1.6. Stress and strain at failure 
Equation 8, in conjunction with Equation 1, gives 
the important interrelation of the failure strain 
and failure stress: 

ef = QP-O-a)/" (af - - t~176 , (10) 
\o1! 

which, on substitution of the numerical values of 
the constants from Table I, reduces to 

(a , l~ 
ef = 4 .3x10  -4 - -  (11) 

\~ 
Yield strain is thus nearly proportional to the 
square-root of the yield stress, indicating a low 
sensitivity of ef on of. This bears a close resem- 
blance to the proposed relation of Greenwood 
[15] of ef oc a 0-4 for creep fractures in metals at 
high temperatures. Equation 11 is compared with 
the experimental results in Fig. 5. The failure 
strain for the slowest test is shown here without 
applying any correction. Note the results for the 
premature failures. 

3. 1.7. In i t ia l  modu lus  
It is customary in engineering practice to deter- 
mine a tangent modulus from the initial slope of 
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the stress-strain curves. The error in determining 
these slopes, and hence the moduli, was, however, 
thought to be due largely to uncertainty in the 
loading conditions during the initial period and the 
errors in measuring the stresses and, particularly, 
the strains at low levels. Moreover, these moduli 
were thought to be ambiguous because of  the 
curvature in the stress-strain curves, unless the 
sections of  the stress-strain curves were specified. 
Nonetheless, Fig. 1 shows a general increase in 
the initial slope of  the stress-strain curve with 
increase in strain rate. To avoid the ambiguity of  
the customary eye-fitting, the secant modulus, Eo ,  

to  the fixed initial stress level of  a =  0.5 or 
1 .0MNm -2 was determined. Both ate shown in 
Fig. 6. The results are rather scattered, but indi- 
cate that the stress-strain curves are not far from 
linear up to the stress level of  1 MNm -2. The 
trend, however, towards an increase with increase 
in strain rate is clear and agrees numerically with 
previous experimental observations of Traetteberg 
et  al. [2] for a stress level of  about 0.3 MNm -2 for 
the same type o f  ice and is consistent with a 
viscoelastic model of  this behaviour presented by 
Sinha [17]. 

All the moduli reported here are considerably 
lower than the Young's modulus of  about 
9.5 GNm -2 determined earlier for the same type 
o f  ice, loading direction, and temperature [7]. The 
initial modulus of  about 6.2 GNm -2 obtained for 
the two tests at ~ = 5 x 10 -s sec -1 (Fig. 6) is also 
significantly less than the Young's modulus o f  ice. 
Thus, the conditions for brittle-like premature 
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failures, noticed in both the tests mentioned, were 
far from the "pure elastic" conditions. 

3.2. Tests at constant stress rate 
3.2. 1. General observations 
It was decided to perform tests at constant stress 
rates of  less than 1 x 10 -1MNm -2 sec -1 in order 
to avoid the initiation of  premature failure. This 
was prompted by the fact that both the tests 
performed at ~ = 5 x 10 -s sec -1 failed prematurely 
by splitting and had nearly constant stress rates 
of  about 3 x 10 -1 MNm -2 sec -1 during the pre- 
splitting period. 

Stress-strain diagrams for the five tests are 
shown in Fig. 7. The crack-forming rate and strain 
rate increased with time for each specimen. It 
was difficult to decide how long to continue a 
test because there were no defined criteria or 
definitions for failure under these conditions. The 
sample tested at d = 8 x 10 -3 MNm -2 sec -1 was 
perhaps unloaded too early, although the stress 
level reached in this case might not differ greatly 
from the possible maximum value. Only the stress 
rate dependence of  less ambiguous quantities such 
as failure stress (the observed maximum stress) 
and the initial modulus will be discussed, because 
the failure time, and, hence, the failure strain, 
were uncertain. The results are considered to be 
preliminary. 

3.2.2. Strength-stress-rate relation 
The dependence of  the observed "quasi"-maximum 
stress, gin, on the stress rate, 6, was of  the form 
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(r---~m = R (12) 

al W'! 
where R and r are constants. 

A least-squares regression analysis of the data 
gave R = 12.4 and r =  0.23, with a correlation 
coefficient of 0.995 (Table I). Substitution of 
these values of R and r in Equation 12 gives 

am = 12.4(--6t~ (13) 

a: \611 

in which 61 = 1MNm-2sec -x. Equation 13 is 
compared with the observed values in Fig. 8. 

3.2.3. Initial modulus 
Uncertainties in determining the initial tangent 
modulus in the present cases are similar to those 
for the constant strain-rate condition. The secant 
modulus, Ea, to ( r=0 .5  and 1.0MNm -2 were 
therefore determined. 

Fig. 9 shows scattered results but indicates 
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strongly that the stress-strain diagrams were not 
linear even in the low stress range of 0.5 to 
1.0MNm -2. The trend towards an increase in 
the initial modulus with stress rate is also evident. 
All the moduli shown in Fig. 9 are, again, consider- 
ably lower than the Young's modulus of about 
9 .5GNm -2 for the ice used [7, 17]. These, in 
turn, indicate that pure elastic loading conditions 
will be achieved, at the temperature under con- 
sideration, at rates higher than the highest rate used 
in the present cases. The modulus expected from 
Fig. 9 for a stress rate of 3 x 10 -2 MNm -2 sec -1 
is consistent with the values obtained for the two 
tests at a constant strain rate of 5 x 10 -s sec -2 
(Fig. 6). As mentioned earlier, these had about the 
same stress rate before they failed prematurely. 

4. Comparison with earlier investigation 
4.1. Strain-rate sensit ivi ty of strength 
Now that results have been obtained with a closed- 
loop system for truly constant strain and stress 
rates, it would be useful to compare them with 
results previously obtained with a conventional 
system. 

Strength results for columnar-grained S-2 ice 
of average grain diameter of 4 to 5 mm obtained 
with a conventional test machine are shown in 
Fig.10 as a function of nominal strain rate, dn, 
and of average strain rate to failure, ear [1]. A 
0.1 MN capacity Instron TTDM-L machine was 
used. This system, including the 5cm x l 0cm x 
25 cm specimens, will be called System 2 and the 
closed-loop system will henceforth be called 
System 1. 
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Figure 9 Dependence of  the secant modulus 
on constant stress rate for columnar-grained 
S-2 ice of  average grain diameter o f  4 to 
5 m m  a t - -  10 ~ C. 

i0 0 

The dependence of strength on en and ear was 
found to be 

en (Systeme2 2) = 3.4 x 10 -7/~ ~1)\3"~ (14) 

and 

__ear (System 2) = 1.4 x 10 -7 (~176 (15) 
~2 \ ~ /  " 

The form chosen for Equations 14 and 15 is 
straightforward [1]. The coefficients give the 
strain rates at which strength is unity and stress 
exponents determine the shape of the strength- 
strain-rate curve. The form of the relation also 
permits a ready comparison of the rate sensitivity 
of strength, with the dependence of viscous flow 
on stress in pure creep to be discussed later. 

Stress exponents in Equations 14 and 15 
are equal, within the accuracy of measurement 
[1]. The curves described by these relations are 
therefore the same in shape. The coefficients 
in Equations 14 and 15, however, differed 
significantly from each other, indicating a shift in 
the two curves on the strain.rate axis (Fig. 10). 
Thus, the same strength is obtained for er~ of 
about two and a half times greater than ea~. 
A unit strength of 1 MNm -2, for example, will be 
obtained at en = 3.4 x 10 -7 sec -2 compared to 
ea~ = 1.4 x 10 -7 sec -2 . 

The results of the present series, using the 
closed-loop machine (System 1), can be compared 
with the results of System 2 described above by 
rearranging Equation 1 to give 

L 
~2 \02 / " 
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Figure 10 Strain rate dependence of yield 
or failure stress and stress dependence of 
viscous flow rate of S-2 ice at -- 10 ~ C. 

Using the values of P and p from Table I, this 
reduces to 

- -  (O'f 1 2"90 
d (System 1) = 1.81 x 10 -7 - -  (17) 
~i \oi I " 

The stress exponents of Equations 14, 15 and 
17 are almost the same, but the coefficient of 
Equation 17 is comparable to that of Equation 15 
rather than to that of Equation 14. Thus, the 
dependence of strength on average strain rate 
appears to be in better agreement with the results 
of true constant strain rate tests than with those 
of nominal strain rate (Fig. 10). 

4.2. Time and strain aspects of tests 
The observations made in the previous paragraph 
may be coincidence. Examination revealed that 
specimens tested in System 2 tests took longer to 
yield or fail and underwent a greater strain than 
those that had the same failure or yield stress 
tested in System 1. This may be seen by compar- 
ing Equations 6 and 11, respectively, with the 
following relations developed for System 2 [ 1 ]. 

(Ort-2'3 
~-1 (System 2) = 3.4 x 103 - -  (18) 

\o,j 
and (oqo , 

ef (System 2) = 4.7 x 10 -4 - -  (19) ~ !  " 

The similarities between Equations 6 and 18, 
and 11 and 19 are encouraging, considering 

that Equations 18 and 19 were developed with 
procedures totally different from those used 
for Equations 6 and 11. Equations6 and 18 
differed mainly in their coefficients, whereas 
Equations 11 and 19 differed primarily in the 
values of their stress exponents. Work is in progress 
to establish the reasons for these differences in the 
responses of the two test systems. From the 
phenomenological point of view, it may be seen 
from Equations 11 and 19 that the soft system, 
System 2, deforms material more than the stiffer 
system, System 1, in inducing failure at the same 
failure stress. 

4.3. Failure modulus 
To carry the question further, consider the "failure 
modulus" , El, defined as the ratio of  yield or 
failure stress and the corresponding strain, 

Ef = of/el. (20) 
a s /  

Failure modulus is essentially the secant modulus 
at failure. From Equations 10 and 20 and from 
Table I, or from Equations 11 and 20: 

( 2 1 )  
\ o , !  " 

Ef (System 1) = 2.31 x 103 

From Equations 19 and 20 

Ef (System 2) = 2.13 x 103 
O'f lO'2S 
- -  ( 2 2 )  

\ o 1 /  " 
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Figure 11 Dependence of failure modulus 
on maximum stress as observed on a closed- 
loop system and on a conventional test 
machine. 

Comparison of Equations21 and 22 and of 
the corresponding experimental results are 
shown in Fig. 11. The trends in the responses of 
the two systems are quite evident, although 
Equation 21 describes the experimental results of 
System 1 better than does Equation 22 for the 
corresponding results of System 2. It seems that 
the harder the system the less the ductility of the 
material. 

It would be useful to relate Ee to the imposed 
loading conditions, that is, to the imposed strain 
rate. This can be achieved in System 1 by sub- 
stituting of/u1 from Equation 1 and ef from 
Equation 8 into Equation 20, giving 

P (c- i p+q-1 
E e (System 1) = ~ 1~1--1 (23) 

# 

In Equation 23 introduction of the numerical 
values of the constants from Table I gives I I~ 

E~ (System 1) = 2.90 x 104 \el--I (24) 

In the conventional test system, System 2, an 
unequivocal relation of the above type cannot be 
obtained because of the non-constancy in the 
strain rate leading to the uncertainty of the 
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loading conditions. It was therefore decided to 
derive the dependence of Ef on both en and ea~- 
In Equation 22 substitution of of/al from 
Equations 14 and 15, respectively, gives 

(Ent~176 
E~ (System 2) = 7.27 • 103 --- (25) 

and 
('~af 10"082 

Ee (System 2) = 7.76 • 1 0  3 - -  (26) 

Calculations based on Equations 24 to 26 are 
shown in 'Fig. 12, together with the relevant 
experimental observations. The deviations in the 
response of the two systems above a strain rate of 
about 10-6sec -1 are noticeable. This coincides 
well with the observation that internal cracks 
formed during loading for strain rates 10 -6 sec -1 
and above> but not at 5 x 10 -7 seo -1 in the present 
series of Sys teml  tests (Fig. 2); cracks were 
observed to form at strain rates 5 x 10 -7 see-a or 
above for System 2 [ 1 ]. Micromechanical processes 
during deformation are under examination to 
establish whether the two system started to 
deviate markedly as a result of internal cracking. 

As System 1 had an effective infinite stiffness, 
the corresponding Es against ~ curve can be con- 
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Figure 12 Dependence of failure 
modulus on strain rate. For the 
conventional system the results 
are shown both as functions of 
nominal strain rate and average 
strain-rate to failure. 

sidered as the limiting one. Because of  the factors 
controlling the deformation behaviour during a 
test, it appears that the dependence of  El  on d for 
a true constant strain rate condition cannot be 
obtained from a conventional test system, not 
even using average strain rate to failure, d~. 

4 .4 .  Creep  u n d e r  c o n s t a n t  s tress 
Discussion of  the strain-rate sensitivity of  the 
deformation behaviour of  ice would be incomplete 
without some consideration of  the results of  
constant stress creep tests. For a non-linear visco- 
elastic model of  columnar-grained S-2 ice loaded 
perpendicular to the columns, Sinha [7] described 
the total creep strain in terms of  elastic, delayed 
elastic, and viscous components. Both delayed 
elastic and viscous deformation were shown [7] 
to have the same activation energy at temperatures 
o f  -- 44 and -- 10 ~ C (0.84 Tm to 0.96 Tm, where 
Tm is the melting temperature). "Viscous" was 
used in a general sense to describe flow leading to 
permanent deformation. The viscous strain-rate 
component,  ev, was determined to be 

dv 
�9 

= % \ . 1  ! 

where n = 3 . 0  and dvl = 1 .76x10  -7 a t - - 1 0  ~  
(0.96Tm). Note that the viscous strain-rate 
component,  while similar in form to one of  the 
commonly used, secondary or steady-state creep- 
rate functions, is not  necessarily intended to 
describe such creep. Equation 27, with the con- 
stant evl given, was thought to be valid for exper- 
imental conditions where the microstructure did 

not deteriorate with the formation of  internal 
voids and cracks or recrystallization [7]. An 
examination was later made of  the possible role 
that grain-boundary sliding plays in the creep of  
polycrystalline materials at elevated temperatures 
[18]. It was concluded that Equation 27 should 
apply for conditions where accommodation by 
grain-boundary diffusion processes do not play a 
dominating role. It was also concluded that viscous 
creep rate was independent of  grain size under 
these conditions, and that delayed elastic defor- 
mation should be sensitive to grain size. As the 
contribution of  delayed elastic strain to total 
strain is large during the early creep period, it 
was further concluded that the transient creep rate 
should show a marked sensitivity to grain size. 
Grain-size insensitivity of  viscous creep rate has 
since been verified experimentally by Duval and 
LeGac [19] for ice of  grain diameter 1 to 10ram 
at 0.97 Tm (-- 7 ~ C) for a stress of  ale ~ 5 x 10 -s. 
The effect of  grain size on transient strain in creep 
can be seen in the work ofGarofalo etal. [20] on 
an iron-base austenitic alloy at 0.55 Tin (704 ~ C). 

The numerical values of  both the coefficient 
and the stress exponent in Equation 27 at --  10 ~ C 
agree remarkably well with the corresponding 
values in Equation 17. The stress dependence of  
the viscous creep rate in creep under constant 
stress, therefore, appears to agree numerically 
with the strain-rate sensitivity of  the upper yield 
stress for a truly constant strain rate. Fig. 10 
illustrates this and indicates that the stress depen- 
dence of  the viscous creep rate agrees well with the 
strength results for conventional screw-driven 
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machines if they are presented in terms of average 
strain rate (see Equation 15) rather than nominal 
strain rate (Equation 14). Note also the differences 
in the grain diameter (3 mm) of the materials 
originally used during creep experiments in devel- 
oping Equation 27 and in the present (System 1) 
and the System 2 strength tests (4 to 5 mm). 

No published evidence could be found for any 
other polycrystalline material of a one-to-one corre- 
spondence in either the coefficient and exponent 
for the dr--  o relation in creep or d -- o~ relation 
in strain-rate experiments. There are innumerable 
examples of equations of the form of Equation 27, 
known as Norton's law, for describing the depen- 
dence of steady-state or, more accurately, minimum 
creep rate on stress [10, 21-23]  as well as the 
dependence of flow stress on strain rate [241. This 
power law is commonly used to describe the 
dependence of quasi steady-state flow stress on 
strain rate in metals and alloys during superplastic 
flow [25, 26]. The question arises as to whether 
the absence of the above-mentioned correspon- 
dence for other materials is due to the fact that 
most so-called constant strain rate experiments 
were actually performed under constant cross- 
head rates rather than under truly constant strain 
rate. 

If  the above-mentioned correspondence in ice is 
not just a coincidence, then this, in conjunction 
with the observed grain-size insensitivity of viscous 
flow, leads to speculation that the upper yield 
strength should be independent of grain size at 
constant strain rate and temperature at high 
temperatures. There are no experimental results 
available for ice to permit one to examine this 
aspect, except for those of Wang [8] who tested 
natural sea-ice from the Arctic with the same 
machine as that used in the present series of 
experiments; his results, however, were highly 
scattered. The insensitivity of tensile yield strength 
to grain size above 0.5 Tm that has been observed 
in metals [10] lends some support to this con- 
clusion, particularly in view of the parallelism 
shown for interdependencies of o~, tf, ef and d 
obtained in the present study and the interrelation 
of corresponding quantities in tensile creep failures 
in other materials. 

4.5. Stress-rate sensit ivity of strength 
In a constant cross-head rate test, as mentioned 
earlier, the stress rate was observed to be nearly 
constant up to about 90% of the corresponding 
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yield stress. This stress rate during loading, o~, as 
well as the average stress rate to yield, d~, varied 
systematically wi th  cross-head rate or nominal 
strain rate. Thus, the relation of yield stress, of, and 
6~ and daf could be developed [1]. On conversion 
to the form of Equation 13 these interdepen- 
dencies at - 10 ~ C are given by 

of (System 2) = 11.3 
O1 

and 

a~ (System 2) = 11.7 
O1 

Although these relations 

( d~t ~ (28) 
dl /  

- -  (29) 
\d l  / " 

were formulated 
primarily to examine the effect of system stiff- 
ness on strength, it is of interest that the power- 
law dependence of "strength" on stress rate does, 
in fact, apply to truly constant stress rates. The 
coefficients in Equations 28 and 29 agree well 
with that in Equation 13. The stress-rate exponents 
in Equations 28 and 29 are, however, consider- 
ably greater than that in Equation 13. This results, 
in System 1, in higher values in the range tested, as 
shown in Fig. 13. The illustration also shows that 
6af in the conventional system seems to give 
marginally better agreement with System 1 than 
d~. As daf can be estimated from of and tf with- 
out any additional effort, its use is particularly 
recommended where information on strain is not 
available, as is often the case for field tests. 

5. Transi t ion to true br i t t le  fai lure 
Equation 24 was developed from data over a 
limited range of strain rates. It should not be 
extrapolated outside that range without due 
consideration of the physical processes that occur 
during loading. On the high side of the strain-rate 
scale, the application of Equation 24 is certainly 
limited because the modulus, Ef, cannot be greater 
than the Young's modulus of ice, E. If  it is assumed 
that E = 9.5 GNm -2 [7], then Equation 24 gives 
d = l . l x l 0 - 3 s e c  -1 for Ee=E and prescribes 
the minimum strain rate at which the loading will 
be pure elastic. 

Now the stress-strain curve should be linear up 
to the failure point, with a slope equal to E if 
loading is pure elastic. This means that the initial 
modulus should also be 9.5 GNm -2 at a strain rate 
of about 1.1 x 10 -3 sec -1. Fig. 6 indicates that this 
may be the case. The corresponding stress rate 
(E~) will be 10.5 MNm -2 sec -1 . Thus, the initial 
modulus should also be about 9 .SGNm -2 for a 
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constant stress rate of  about 10.5MNm -2 sec -1. 
The observations in Fig. 9 are consistent with this 
possibility. 

These discussions strongly support the idea that 
the conditions for pure elastic loading are 

(elastic) i> 1.1 x 10 -3 sec -1 (30) 

and 

for 

and 

6 (elastic) ~> 10.5 MNm -2 sec -1 

T = 0 . 9 6 T  m ( - 1 0  ~  

d = 4 to 5ram. (31) 

Equation 2 for a constant strain rate of  1.1 • 
10 -3 sec -1 and Equation 13 for a constant stress 
rate of  10 .5MNm-2sec  -1 give, respectively, a 
strength of  20 .9MNm -2 and 21 .3MNm -2. 
Compared with these strength values for System 1 
tests, Equations 28 and 29 for System 2 tests 
give, respectively, 23.4 and 23 .7MNm -2 at 
61 = 6 a  = 6 = 10.5 MNm  -z sec -1 . It is of  interest 
that these strength values, predicted for true 
elastic loading, are so close to each other in spite 
of  the fact that Equations 2 and 13 and 28 and 29 
were developed empirically from three independent 
sets of  experiments. 

The predicted strengths are considered hypo- 
thetical at this moment.  They are close, however, 
to results reported by Haynes [27, 28] from four 

Figure 13 Comparison of stress-rate depen- 
dence of strength determined with a 
closed-loop system and with a conventional 
screw-driven machine. 

I00 

tests giving 17.9 + 2.3 MNm -2 for en = 1.02 x 
10 -2 sec -1 and two tests of  15.1 and 15.8MNm -2 
for en = 1.02 x 10~ -1 at --  10 ~ C (0.96 Tin). 
Such high unconfined compressive strengths for 
polycrystalline ice (though only about E/500)  
have never been reported before, except for the 
results o f  Parameswaran and Jones [29] who 
found a strength of  24 + 12MNm -2 at -- 196 ~ C 
(0.28 Tin) for isotropic polycrystalline ice with 
d ~ 1.5 mm at ~, = 10 -s to 10 -3 sec -x. 

The test results of  Haynes [27, 28] are of  par- 
ticular interest because of  the high temperatures 
involved. He used moulded dumb-bell-shaped 
specimens of  length 83 mm having a gauge section 
of  4 0 m m  length and 2 5 m m  diameter. The ice 
was isotropic and fine grained ( d <  1 ram), but 
it contained bubbles and had a density of  
911 kg m -3. A 1.25 MN capacity closed-loop servo- 
hydraulic test machine equipped with an environ- 
mental chamber was used. Experiments were 
conducted at two constant displacement rates of  
84.7 and 0.847 mm sec -a , giving the nominal strain 
rates mentioned above. No strain measurements 
were made in the gauge sections of  the specimens. 
As this test system was "very stiff" in comparison 
with the specimen, it was distinctly possible that 
the specimen strain rates were close to the corre- 
sponding nominal strain rates. This was, in fact, 
indicated by observations carried out on this 
system by Sinha and Frederking [3]. It should be 
mentioned also that Hawkes and Mellor [30] had 
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T A B L E I I Stress rate, strain rate and effective modulus calculated for a stress of  1 MN m -2 at --  10 ~ C for two grain 
sizes and three loading times. Calculations are based on [31] 

Grain Time, t Average stress rate, Average strain rate, Effective modulus, 
size (sec) a / t  ear = e t / t  a 
(mm) (MNm -2 see -1) (see - i )  E t  = - -  

et 
(GN m -z) 

4.5 1 X 10 -1 10 1.11 X 10 -3 9.01 0.95 
4.5 1 X 10 -~ 100 1.08 X 10 -2 9.27 0.98 
4.5 1 X 10 -3 1000 1.06 X 10 -1 9.39 0.99 

1.0 1 X 10 -1 10 1.31 X 10 -3 7.65 0.81 
1.0 1 X 10 -z 100 1.17 X 10 -z 8.55 0.90 
1.0 1 X 10 -3 1000 1.11 X 10 -1 9.04 0.95 

earlier reported a strength of 8.5 + 1.3 MN m -2 at 
- - 7 ~  for en = 1 x 10-2sec -1. They used the 
same type of specimen geometry and ice as Haynes 
[27, 28] but a conventional screw-driven machine 
of 5 kN capacity. Thus, the actual specimen strain- 
rate was considerably less than en" Hawkes and 
Mellor [30] reported for these test series an average 
strain-rate to peak-stress, ea~, of  8.4x 10 . 4 +  

3.7 x 10 -4 sec -1, but their method of strain esti- 
mation was doubtful. The high strengths obtained 
by Haynes [27, 28] were certainly due to the high 
strain rates and reduction of end effects resulting 
from his use of moulded dumb-bell-shaped speci- 
mens. The lower strength at the higher of the 
two strain rates he used is an indication of the 
increased uncertainty regarding premature failure 
due to the end effect at the higher strain rate. 

Sinha [17] proposed a simple, though not 
rigorous, method on the basis of the viscoelastic 
model [7] for estimating the dependence of 
effective modulus on the imposed loading con- 
ditions. This analysis was extended [31] to take 
account of the effect of grain size introduced in 
the creep model .[ 18]. Examples of calculations for 
two grain sizes relevant to the present discussions 
are given in Table II. They show that a sharp 
transition from viscoelastic to pure elastic loading, 
as indicated by ERIE, does not occur. This is more 
realistic and natural than the sharp transition 
that might be predicted by the extrapolation of 
Equation 24 and presented by the "equality" in 
Equations 30 and 31. 

The conditions in Equations 30 and 31, how- 
ever, agree remarkably well with the calculations for 
the coarse-grained ice given in the top horizontal 
line in Table II, indicating a predominantly elastic 
loading, i.e., E t within 5% of E. A comparable 
degree of elastic loading for fine-grained ice is 
predicted, however, by the values given in the 
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bottom row of Table II, agreeing closely with the 
loading conditions employed by Haynes [27, 28]. 
Table II indicates, however, that the higher rate 
testings of Haynes were closer to elastic loading 
than those at lower rates and perhaps resulted in 
the premature failures mentioned earlier. Thus, 
considerably higher strength values might be 
obtained with further improvement of tests. More 
experimentation is necessary to verify this point. 

From the microstructural point of view, there 
seems to be a possibility of true brittle failure [32] 
without any inelastic deformation. That condition, 
according to the present theory, will be achieved at 
an infinitely high rate of loading [31 ], particularly 
at the high temperatures under consideration, and 
cannot be well defined. Any discussion of a 
"transition" from viscoelastic to true elastic or, 
for that matter, from ductile to true brittle, is 
therefore futile unless the "transition" itself is 
defined and qualified. One suggestion is to use, 
for practical purposes, a given EdE value. Once 
this is accepted it can be shown that the required 
conditions for a given material will be determined 
not only by the rate of loading and temperature 
but also by the grain size and other structural 
features. 

6. Conclusion 
Unconfined compressive strength of inclusion- 
free, transversely-isotropic, columnar-grained S-2 
ice of average cross-sectional grain diameter 
of 4 to 5 mm has been investigated at -- 10 ~ C 
(0.96 Tin), for loads applied normal to the column 
axis, under truly constant strain rate in the 
range of 5 x 1 0  -7 to 5 x 1 0  -ssec -1 and truly 
constant stress rate in the range of 1 x 10 .3 to 
8 x 10 -2 MNm -2 sec -1 . 

Upper yield stress increased from 1.2 to 
5.6MNm -2 in the strain rate range 5 x 10 -7 to 



3 x 10-Ssec -1, and the corresponding yield or 

failure times ranged from 870 to 36 sec. Tests at 
5 • 10 -s sec -1 failed prematurely.  Stress-s t ra in  
curves were linear up to a load of  about 1 MNm -2 
and the initial modulus increased from 3 to about 
7 G N m  -2 in the range of  strain rate investigated. 
Brittle-like splitting failures at 5 x 10 -s sec -1 do 
not  indicate the pure elastic loading condition. It 
was observed that  the upper yield stress increased 
as the cube-root of  the imposed strain rate, and 
that  the yield strain was proport ional  to the 
square-root of  yield stress. Yield time was found 
to be inversely proport ional  to yield stress to 
the power of  2.5. Extrapolat ion of  the failure- 
modulus-s t ra in- ra te  relation predicts the condit ion 
for pure elastic loading and, hence, transition to 
true elastic brit t le failure to be at a strain rate 
greater than 1 x 10 -3 sec -1 for the ice and tem- 
perature used. Failure modulus in a conventional, 
soft system is considerably less than the corre- 
sponding modulus in a closed-loop system. The 
material  appears to be more ductile in the con- 
ventional system and experiments at the same 
nominal strain rate take longer to complete.  Results 
obtained with conventional systems should be 
used with caution. 

Strength increased from 2.5 to 6 . 8 M N m  -2 in 
the range of  constant stress rate of  the experiments.  
It was found to increase approximately as the 
fourth-root  of  stress rate. Initial modulus increased 
from about 3 to about 6 G N m  -2, but  the s t ress -  
strain curves exhibited marked non-linearity, even 
in the stress range of  0.5 to 1.0 MNm -2. Equations 
giving yield stresses in terms of  the stress rates 
during loading or average stress rate to yield, 
developed earlier from conventional constant 
cross-head rate tests, give a lower maximum stress 
than that  which is observed in a truly constant 
stress rate test for the same conditions. 

A one-to-one numerical correspondence was 
found between t h e  relation for strain rate and 
upper yield stress in the constant strain rate 
strength tests and the dependence of  viscous 
creep rate on stress in the constant stress creep 
experiments at the same temperature.  This corre- 
spondence also extends to results obtained with a 
conventional machine under constant cross-head 
rates provided they are expressed in terms of  
average strain-rate to yield. The above corre- 
spondence was not  found for the relation con- 
ventionally developed between peak stress and 
nominal strain rate. The numerical value of  the 

stress exponent ,  however, was found to be 
insensitive to the response of  the measuring 
system. 

It has been shown that  the observed inter- 
dependence among the values for compressive 

yield strength, strain rate, failure strain and 
time is very similar to the interdependence 
among the corresponding values in tensile creep 
rupture or failure tests in metals and alloys at high 
homologous temperatures.  Thus, ice could serve 
as a good model  material for deformation studies 
at high homologous temperatures. 
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